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1    Objectives and Summary 

This is the final report for grant number AFOSR F49620-95-1-0019. This 
project addressed a broad range of problems in robust, nonlinear, and adaptive control 
that have application to aerospace systems and Air Force objectives. Under this 
project we developed novel control techniques along with supporting computational 
algorithms. 

An additional accomplishment of the project was the experimental implemen- 
tation and validation of the control methods developed under this project. These 
laboratory experiments were invaluable in providing guidance for pursuing the most 
promising lines of research. These experimental activities thus provided significant 
enhancement to the original scope of the project. 

Several graduate students in the Aerospace Engineering Department at the 
University of Michigan were supported in part by this grant. Drs. Ravinder Venugopal 
and Sanjay Bhat received their Ph.D. degrees from the University of Michigan in 
August 1997. Dr. Venugopal's research was in adaptive control theory, while Dr. 
Bhat's area was nonlinear control. Also associated with this grant were two AASERT 
grants. Grant F49620-94-1-0409 supported the research of Dr. James Akers in linear 
system identification, while grant F49620-93-1-0502 supported the research of Dr. 
Robert Bupp in nonlinear control. The results of these two researchers, which were 
reported separately as required by those contracts, is summarized below. Finally, 
the Principal Investigator was responsible for supervising the research of two Palace 
Knight students. Dr. Andrew Sparks is currently at Wright-Patterson AFB, while 
Dr. R. Scott Erwin is currently at Phillips Laboratory. Several additional students 
who have not yet completed their Ph.D. degrees were partially supported under this 
grant. 

Our efforts have focused on the following four projects: 

Robust, Fixed-Structure Control. We developed new techniques and sup- 
porting computational algorithms for robust, fixed-structure controller synthe- 
sis. A MATLAB-based toolbox was developed for robust control design in the 
s—, 6—, and z— domains with general constraints on the controller structure 
and multiple performance criteria. This toolbox was applied to a noise control 
experiment. 

Identification. We developed and demonstrated new techniques for linear 
system identification. These identification techniques were applied to an acous- 
tic duct experiment to obtain models involving lightly damped modes. These 
identified models were used as the basis for fixed-structure and adaptive con- 
troller synthesis. 



Adaptive Cancellation. We developed and demonstrated new adaptive 
cancellation techniques for noise and vibration suppression and for control 
of rotating imbalance. For noise and vibration suppression these algorithms 
were demonstrated experimentally with both tonal, multi-tone and broad- 
band noise. For rotating imbalance these algorithms were experimentally im- 
plemented and were shown to adaptively compensate for the effects of mass 
imbalance. Applications include magnetic bearing control as well as control of 
unbalanced control moment gyros for spacecraft applications. 

Nonlinear Control. We developed and experimentally demonstrated non- 
linear control techniques for two nonlinear electromechanical systems, namely, 
the rotational/translational actuator (RTAC) and the electromagnetically con- 
trolled oscillator (ECO). These nonlinear systems were realized in the form of 
laboratory experiments, and nonlinear controllers were implemented. In addi- 
tion, we developed new results for continuous finite-time stabilization. 

During the three-year period of this grant papers were presented at the fol- 
lowing conferences: 

IEEE Conference on Decision and Control, Orlando, FL, December 1994. [13, 
28, 46, 81, 82, 92, 107] 

American Control Conference, Seattle, WA, June 1995. [3, 15, 22, 29, 30, 49, 
52, 58, 66, 68, 87, 94] 

IEEE Conference on Decision and Control, New Orleans, LA, December 1995. 
[69, 83, 85] 

IFAC World Congress, San Francisco, CA, June 1996. [11, 44, 71, 74, 88, 95] 

IEEE Conference on Control and Its Applications, Dearborn, MI, October 
1996. [16, 23, 26, 60, 75, 99, 100] 

American Control Conference, Albuquerque, NM, June 1997. [7, 8, 24, 34, 39, 
40, 42, 64, 102] 

IEEE Conference on Control and Its Applications, Hartford, CT, October 
1997. [2, 63, 77] 

The Principal Investigator presented a plenary lecture at this conference. The title 
of this talk was "From Robust to Adaptive and Beyond: Liberating Control from the 
Tyranny of Modeling." In addition, papers were to appear at the conference 

IEEE Conference on Decision and Control, San Diego, CA, December 1997. 
[1, 9, 41, 76, 101] 

and papers were submitted to the conference 

American Control Conference, Philadelphia, PA, June 1998. [19, 32, 37, 62, 
73, 78, 79, 103] 



All of the results obtained under this grant have been extensively documented 
in journal and conference papers. Specifically, the papers [17, 18, 53, 55, 59, 67, 72, 
47, 48, 54, 56, 57, 84, 86, 89, 96, 108] were published, the papers [21, 25, 45, 61, 65, 70, 
91, 105] were accepted for publication, and the papers [10, 20, 27, 31, 33, 35, 36, 38, 
43, 80, 90, 97, 104, 111] were submitted for publication. All of the published papers 
are available from the given sources, and all of the submitted and accepted papers 
are available from the Principal Investigator. 

All of the original research objectives have been achieved, and many 
of our accomplishments represent significant extensions of the originally proposed 
program. The Robust Fixed-Structure Toolbox has been distributed to several com- 
panies and universities. The identification and adaptive cancellation techniques have 
been experimentally implemented and tested on both laboratory scale experiments 
and an industrial facility. The nonlinear methods have been extensively developed 
and implemented on experiments as well. All of these results have been thoroughly 
documented in papers submitted or published in archival journals. 

2    Technical Results 

2.1    Robust Fixed-Structure Control 

This effort has focused on the development of techniques for robust fixed- 
structure control. Under this grant we completed a fully portable version of a 
MATLAB-based Robust Fixed-Structure Toolbox. This toolbox has several unique 
features that give it capabilities that are not available from any other toolbox in the 
linear robust control area. These can be summarized as: 

1. Fixed-structure optimization via decentralized static output feed- 
back controller architecture. This approach to controller synthesis avoids both 
plant order reduction and controller order reduction by providing a direct path from 
a high-order plant model to a low-order controller. To provide a general formula- 
tion for fixed-structure controller synthesis we employ a decentralized static output 
feedback controller formulation. This problem formulation provides a unified con- 
troller framework for capturing arbitrary controller structures including static and 
dynamic controllers in centralized, decentralized, and hierarchical architectures with 
order constraints and arbitrary afnnely parameterized state space realizations [44, 45]. 

2. Robustness and performance measures. To account for plant un- 
certainty, we developed new bounds for structured real and complex uncertainty. 
These bounds provide a vehicle for optimizing an H2 cost bound with respect to the 
controller parameters and can be used for structured singular value synthesis. In 
particular, scaled Popov bounds [14, 51, 86, 90, 91] provide upper bounds for the 
peak real structured singular value without frequency-dependent scales and multipli- 



ers. Additional bounds include bounds based upon exclusion regions in the Nyquist 
plane [50, 55] as well as guaranteed cost bounds involving double commutators [98]. 
A new class of bounds is based upon a novel shift term which significantly reduces the 
conservatism of the cost bound. Shift terms have been developed for bounded-real-, 
positive-real-, and Popov-type bounds [56, 95, 97]. When used for controller synthesis 
[34, 35, 57, 64, 65] these bounds eliminate the need for frequency-dependent scales 
and multipliers. Alternative performance norms are considered in [39]. 

3. Alternative time domains. Although our previous research included 
both the continuous-time s domain and the discrete-time z domain, we have expanded 
this project to include controller synthesis in the 8 domain [40, 42]. The 6 domain 
can be viewed as an alternative parameterization of discrete-time dynamics wherein 
the dynamics matrix has the form of a perturbation to the identity matrix. With this 
structure, stable eigenvalues lie within a circle in the left half plane, whereas in tradi- 
tional z-domain synthesis the unit circle is centered at the origin. This distinction is 
critical for plants involving lightly damped poles since, in standard ^-domain synthe- 
sis, the poles tend to cluster near the point 1 + jO, while in the S domain the poles lie 
near the origin. Consequently, numerical controller synthesis in the 6 domain is less 
sensitive than in the z domain. During this reporting period we developed techniques 
for fixed-structure mixed H2/Hoo control in the <5-domain setting. Numerical compar- 
isons have verified the advantages of ^-domain discrete-time control as compared to 
the standard shift operator formulation. These techniques were applied to an acoustic 
duct experiment to design and implement robust low-order controllers [41]. 

4. Quasi-Newton and Homotopy-Based Optimization. To carry out 
fixed-structure controller synthesis we employ both homotopy and quasi-Newton opti- 
mization algorithms. Quasi-Newton algorithms are based upon available high-quality 
software, while homotopy algorithms have been developed in conjunction with Layne 
Watson of Virginia Tech [47, 48, 111]. To guarantee highly portable, machine- 
independent code we converted all FORTRAN programs to MATLAB in order to 
improve the reliability of the interfaces. This toolbox has been distributed to several 
researchers in industry and academia. Several researchers are actively extending the 
capabilities of the toolbox to include additional features. 

2.2    Identification 

The application of robust, fixed-gain control algorithms requires numerical 
plant models. Our laboratory experience has taught us the difficulty of obtaining re- 
liable analytical models from physical principles due to hardware uncertainty. Hence, 
we developed identification methods for constructing plant models from measured 
data. Specifically, we developed a novel identification technique based upon AR- 
MARKOV/Toeplitz models, also known as predictive models in the adaptive control 
literature. This system formulation is neither time- nor frequency-domain based, but 
rather has the time-distributed input-output form of an ARMA model. Unlike ARMA 



models, however, ARMARKOV models explicitly involve Markov parameters which, 
once identified, can be used to construct state space realizations using the eigensys- 
tem realization algorithm [4, 5, 6, 7, 8]. Convergence of the ARMARKOV/Toeplitz 
identification algorithm has been proven under a persistent excitation assumption. 

Our numerical and experimental experience suggests that ARMARKOV mod- 
els are fundamentally more resistant to noise than ARM A models. Specifically, sensor 
and process noise are always present in real data so that the plant model order is diffi- 
cult to determine. Hence overparameterization is inevitable. In the presence of white 
noise inputs for identification, it is well known that a consistent estimate is guaran- 
teed for only the feedthrough coefficient of the ARM A model. In fact, the inessential 
parameters of the overparameterized ARMA model are determined primarily by the 
measurement and process noise. 

On the other hand, one can employ a high-order FIR model, in which case 
the numerator coefficients, which are precisely Markov parameters, can be estimated 
by least squares algorithms with consistency. However, long data records are re- 
quired, and it is here that ARMARKOV models provide a clear advantage. In fact, 
it is easy to prove that consistent estimates of all of the Markov parameters in the 
ARMARKOV model are given by least squares methods, and simulations show that 
these estimates converge more quickly than the estimates provided by an FIR repre- 
sentation. In this way, ARMARKOV models provide improved identification in the 
presence of noisy data. 

To demonstrate the ARMARKOV/Toeplitz identification algorithm, we devel- 
oped a noise control experiment involving an acoustic duct. This experiment involves 
a disturbance source, two colocated microphone/control speaker pairs, and additional 
noncolocated microphones. The controlled system possesses numerous vibrational 
modes and thus provides a challenging testbed for both identification and multivari- 
able robust control [59]. A multichannel spectrum analyzer and a control processor 
with automatic real-time code generation are used for data acquisition, identification, 
and controller implementation. By using measured time-domain input-output data, 
the ARMARKOV/Toeplitz identification algorithm was used to construct state space 
realizations encompassing up to 20 lightly damped modes of the acoustic dynamics. 
Both recursive and batch versions of the ARMARKOV/Toeplitz identification algo- 
rithm were implemented. 

2.3    Adaptive Cancellation 

The most significant accomplishment of this project is the development and 
experimental demonstration of an adaptive feedback controller for tonal and broad- 
band disturbances. We believe that this new technique has the greatest potential for 
a significant impact on control engineering applications. 

One of the main uses of feedback control is to suppress unwanted disturbances 



which can cause excessive vibration levels and poor system performance. Disturbances 
can arise from a wide variety of sources. For example, rotating machinery can cause 
tonal or harmonic multi-tone disturbances, while turbulence can give rise to wide- 
band noise. The reduction of noise and vibration levels can be an important issue 
in aerospace vehicles. For example, aircraft engines can cause excessive noise and 
vibration, while helicopter blade motion can have a similar effect. 

While fixed-gain controllers, such as those given by the fixed-structure meth- 
ods discussed above, can be applied to vibration control problems, they are often 
cumbersome to apply in practice. In particular, fixed-gain methods require models 
of four distinct transfer functions, namely, the transfer functions from disturbance 
and control to performance and measurement. In practice, it is difficult to obtain 
these transfer functions, especially when the disturbance is distributed spatially and 
cannot be measured for identification purposes. In addition, changes in the plant 
dynamics and disturbance spectrum may necessitate extensive re-identification of the 
plant and redesign of the controller. Although robust control techniques can mitigate 
these difficulties somewhat, fixed-gain control techniques can be undesirable in the 
face of changing plant and disturbance conditions. 

Although adaptive control is in general a difficult problem, the noise control 
community has developed a large class of algorithms that work in practice for a 
large class of systems of practical interest. These algorithms include LMS (least 
mean square) algorithms with FIR and IIR controllers, lattice filter techniques, and 
numerous variants. The theoretical foundation of these techniques varies greatly from 
method to method, as does their performance in practical application. 

Under this grant we developed a novel adaptive disturbance cancellation tech- 
nique based upon ARMARKOV/Toeplitz models and hence called ARMARKOV/Toeplitz 
adaptive cancellation [102]. This approach requires no prior knowledge of the distur- 
bance spectrum and only minimal modeling of the controlled system's dynamics. 
Specifically, the transfer function from control to performance is required, although 
the remaining transfer functions (from control to measurement, that is, the plant per 
se, disturbance to performance, and disturbance to measurement) are not needed. 
These requirements are similar to those of other available adaptive cancellation tech- 
niques. 

The mathematical basis for the ARMARKOV/Toeplitz adaptive cancellation 
algorithm is closely related to the ARMARKOV/Toeplitz identification algorithm. 
For applications the ARMARKOV/Toeplitz identification algorithm can be used to 
directly identify the control-to-performance transfer function (more specifically, the 
ARMARKOV/Toeplitz model of this transfer function) for use in the adaptive can- 
cellation algorithm. 

For validation, we implemented the ARMARKOV/Toeplitz adaptive cancel- 
lation algorithm on an acoustic duct experiment. Three classes of test disturbances 
were considered, namely, tonal, multi-tone, and white noise. For tonal disturbances, 
up to 40 dB suppression was obtained, while 10-20 dB was obtained for broadband 



noise. This technique also performed similarly with broadband static generated by 
an AM radio tuner. The method demonstrated fast adaptation (less than 2 seconds) 
in the presence of changing disturbance spectra. A comparison of this algorithm with 
standard LMS algorithms is given in [77]. 

An analysis of feedforward versus feedback strategies in active noise control 
in [61] has been useful in understanding the problem of sensor/actuator placement. 
In particular, this paper provides a connection between control, measurement, dis- 
turbance, and performance colocation and the ability to suppress spillover in the 
closed-loop system. A further study of the relationship between feedback and feed- 
forward control is given in [32]. 

State space analysis of systems with boundary input was studied as a basis 
for control design. Two problems were considered, namely, an acoustic duct with 
endspeaker [100] and slosh [99]. In addition, state space modeling of evanescent 
modes in acoustics was given in [80]. 

2.4    Nonlinear Control 

Several nonlinear control problems were considered in this project. To address 
the problem of actuator saturation, which often is the most common nonlinearity to 
arise in an otherwise linear system, we developed synthesis techniques for full- and 
reduced-order controllers for systems with saturating actuators [12, 93]. These con- 
trollers, which provide asymptotic stability for a specified domain of attraction, do 
not restrict the control input to the interior of the constraint set but rather allow the 
control signal to "ride along" its boundary. The controllers are based upon bounded 
real and positivity criteria and allow both radial and independent multivariable sat- 
uration nonlinearities. The problem of rate saturation, which is important in flight 
control applications, was addressed as well in [96]. 

In another direction of research we applied integrator backstepping techniques 
to a low-dimensional nonlinear dynamics problem in [108]. This problem involves 
a device that can be viewed as a rotational/translational actuator (RTAC). Control 
of the RTAC provides a nonlinear benchmark problem which was the focus of an 
invited session held at the 1995 American Control Conference and is the basis for a 
special issue of International Journal on Robust and Nonlinear Control edited by the 
Principal Investigator [22]. 

To demonstrate our results we constructed an RTAC control experiment to 
provide a testbed for nonlinear control techniques. On this testbed we implemented 
dissipative and integrator backstepping controllers to guarantee stability and to study 
achievable performance [23, 25]. A novel class of controllers, motivated by the pas- 
sive absorbers studied in [29], was developed specifically for this application but has 
broader applicability. Called virtual resetting absorbers, these controllers emulate the 
dynamics of passive absorbers except for the fact that the internal states are reset at 



various times to reduce the "virtual energy" of the absorber. In this way, the control 
actuator is prevented from supplying energy to the system that would otherwise have 
been stored in a passive absorber. The theory of virtual resetting absorbers has been 
developed in [24, 27], while a specialized version, called the virtual trap door absorber 
is given in [26]. 

Hamilton-Jacobi theory was developed in [106] and applied to the problem of 
stabilizing the motion of a spinning top in both the symmetric and asymmetric cases 
[67, 109, 110]. The latter case, which corresponds to a mass imbalance, is of practical 
interest when the imbalance is not known. Since Hamilton-Jacobi theory fails in this 
case, we developed an adaptive virtual autobalancing technique that is able to stabilize 
rotating bodies with unknown mass imbalance [68, 70, 72]. Since this technique 
has potential practical value in rotating machinery, we fabricated two testbeds for 
studying the effects of mass imbalance, one based upon magnetic bearings and the 
other involving a controlled-gimbal platform. The former is applicable to current and 
future generation aircraft engine compressors, while the latter is applicable to control 
moment gyros for spacecraft control. 

An additional topic in nonlinear control involves the study of non-Lipschitzian 
dynamics with application to controllers that yield finite-settling-time behavior. Such 
controllers efficiently use the available control authority with excellent overshoot prop- 
erties. The underlying theory was developed in [15, 20], with applications to finite- 
time control of the double integrator [16, 21] and to Lagrangian dynamics [18]. 

To motivate the development of new nonlinear control methods, we also devel- 
oped an experiment that involves stabilization of nonlinear systems. This experiment 
involves an electromagnet actuator to control a lightly damped oscillator. The ex- 
periment was constructed to serve as an analogue of a flexible mesh or membrane 
that can provide a large lightweight aperture for optical or RF applications. For this 
project we systematically explored a broad range of control strategies, including lin- 
ear, nonlinear and adaptive methods. Our objective has been to develop techniques 
that are highly robust and require minimal prior modeling information. These results 
are described in [62, 63]. 
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